Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients.
نویسندگان
چکیده
Phenotypes of the tomato (Solanum lycopersicum) high pigment-2(dg) (hp-2(dg)) and hp-2(j) mutants are caused by lesions in the gene encoding DEETIOLATED1, a negative regulator of light signaling. Homozygous hp-2(dg) and hp-2(j) plants display a plethora of distinctive developmental and metabolic phenotypes in comparison to their normal isogenic counterparts. These mutants are, however, best known for the increased levels of carotenoids, primarily lycopene, and other plastid-accumulating functional metabolites. In this study we analyzed the transcriptional alterations in mature-green, breaker, and early red fruits of hp-2(dg)/hp-2(dg) plants in relation to their normal counterparts using microarray technology. Results show that a large portion of the genes that are affected by hp-2(dg) mutation display a tendency for up- rather than down-regulation. Ontology assignment of these differentially regulated transcripts revealed a consistent up-regulation of transcripts related to chloroplast biogenesis and photosynthesis in hp-2(dg) mutants throughout fruit ripening. A tendency of up-regulation was also observed in structural genes involved in phytonutrient biosynthesis. However, this up-regulation was not as consistent, positioning plastid biogenesis as an important determinant of phytonutrient overproduction in hp-2(dg) and possibly other hp mutant fruits. Microscopic observations revealed a highly significant increase in chloroplast size and number in pericarp cells of mature-green hp-2(dg)/hp-2(dg) and hp-2(j)/hp-2(j) fruits in comparison to their normal counterparts. This increase could be observed from early stages of fruit development. Therefore, the molecular trigger that drives phytonutrient overproduction in hp-2(dg) and hp-2(j) mutant fruits should be initially traced at these early stages.
منابع مشابه
Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit.
Fruit-specific downregulation of the DE-ETIOLATED1 (DET1) gene product results in tomato fruits (Solanum lycopersicum) containing enhanced nutritional antioxidants, with no detrimental effects on yield. In an attempt to further our understanding of how modulation of this gene leads to improved quality traits, detailed targeted and multilevel omic characterization has been performed. Metabolite ...
متن کاملChloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.
BACKGROUND AND AIMS There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. METHODS Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose grad...
متن کاملTomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening.
Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fruit are sinks of photosynthate, yet unripe green fruit contribute significantly to the sugars tha...
متن کاملPhenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1.
Tomato high pigment (hp) mutants are characterized by their exaggerated photoresponsiveness. Light-grown hp mutants display elevated levels of anthocyanins, are shorter and darker than wild-type plants, and have dark green immature fruits due to the overproduction of chlorophyll pigments. It has been proposed that HP genes encode negative regulators of phytochrome signal transduction. We have c...
متن کاملFruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network
The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been sug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 145 2 شماره
صفحات -
تاریخ انتشار 2007